
Polyspace® Code Prover™ Server™ Release Notes



How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Polyspace® Code Prover™ Server™ Release Notes
© COPYRIGHT 2019-2020 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents


R2020b
 

Compiler Support: Set up Polyspace analysis for code compiled by
Renesas SH C compilers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2

Cygwin Support: Create Polyspace projects automatically by using Cygwin
3.x build commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2

C++17 Support: Run Polyspace analysis on code with C++17 features
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2

Configuration from Build System: Generate a project file or analysis
options file by using a JSON compilation database . . . . . . . . . . . . . . . . 1-2

Configuration from Build System: Specify how Polyspace imports
compiler macro definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3

Configuration from Build System: Compiler configuration cached from
prior runs for improved performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3

Offloading Analysis: Submit Polyspace analysis jobs from CI server to a
dedicated analysis cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3

Offloading Analysis: Server-side errors reported back to client side . . . . 1-4

Results Export: Export Polyspace results to external formats such as
SARIF JSON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4

User Authentication: Use a credentials file to pass your Polyspace Access
credentials at the command line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5

Importing Review Information: Accept information in source or
destination results folder in case of merge conflicts . . . . . . . . . . . . . . . 1-5

AUTOSAR Support: Analysis more resilient to ARXML errors . . . . . . . . . . 1-6

AUTOSAR Support: Specify file and folder patterns to exclude from
analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6

AUTOSAR Support: Specify AUTOSAR software component behaviors and
data types using more refined syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6

polyspacePackNGo Function: Generate and package Polyspace option files
from a Simulink model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6

iii

Contents



Changes in analysis options and binaries . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7
Option -consider-external-arrays-as-unsafe also applies to C code . . . . . . . 1-7
Changes in run-time checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7

Updated code metrics specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8

R2020a
 

Checking Initialization Code: Analyze initialization code alone before
checking remaining program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2

Compiler Support: Set up Polyspace analysis easily for code compiled
with MPLAB XC8 C compilers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2

Compiler Support: Set up Polyspace analysis to emulate MPLAB XC16 and
XC32 compilers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3

Source Code Encoding: Non-ASCII characters in source code analyzed
and displayed without errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3

Checks on Initialization Code: Verify that global variables are initialized
after warm reboot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3

Exporting Results: Export only results that must be reviewed to satisfy
software quality objectives (SQOs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4

Jenkins Support: Use sample Jenkins Pipeline script to run Polyspace as
part of continuous delivery pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4

Changes in analysis options and binaries . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4
Option -function-behavior-specifications renamed to -code-behavior-
specifications and capabilities extended . . . . . . . . . . . . . . . . . . . . . . . . 2-4

Changes in run-time checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5

Report Generation: Configure report generator to communicate with
Polyspace Access over HTTPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5

Report Generation: Navigate to Polyspace Access Results List from report
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5

R2019b
 

Shared Variables Mode: Run a less extensive Code Prover analysis on
complete application to compute global variable sharing and usage
only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2

iv Contents



Compiler Support: Set up Polyspace analysis easily for code compiled
with Cosmic compilers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2

Configuration from Build System: Compiler version automatically
detected from build system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2

Function Stub Improvements: See fewer orange checks from default
conservative assumptions on pointer arguments . . . . . . . . . . . . . . . . . . 3-3

MISRA C:2012 Directive 4.12: Dynamic memory allocation shall not be
used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3

R2019a
 

Code Prover Analysis Engine Separated from Viewer: Run Code Prover
analysis on server and view the results from multiple client machines
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2

Continuous Integration Support: Run Code Prover on server class
computers with continuous upload to Polyspace Access web interface
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2

Continuous Integration Support: Set up testing criteria based on Code
Prover static analysis results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4

Continuous Integration Support: Set up email notification with summary
of Code Prover results after analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4

Offloading Polyspace Analysis to Servers: Use Polyspace desktop products
on client side and server products on server side . . . . . . . . . . . . . . . . . . 4-5

v





R2020b

Version: 10.3

New Features

Bug Fixes

Compatibility Considerations

1



Compiler Support: Set up Polyspace analysis for code compiled by
Renesas SH C compilers
Summary: If you build your source code by using Renesas® SH C compilers, in R2020b, you can
specify the target name sh, which corresponds to SuperH targets, for your Polyspace® analysis.

See also Renesas Compiler (-compiler renesas).

Benefits: You can now set up a Polyspace project without knowing the internal workings of Renesas
SH C compilers. If your code compiles with your compiler, it will compile with Polyspace in most
cases without requiring additional setup. Previously, you had to explicitly define macros that were
implicitly defined by the compiler and remove unknown language extensions from your preprocessed
code.

Cygwin Support: Create Polyspace projects automatically by using
Cygwin 3.x build commands
Summary: In R2020b, the polyspace-configure command supports version 3.x of Cygwin™
(versions 3.0, 3.1, and so on).

See also “Check if Polyspace Supports Build Scripts”.

Benefits: Using the polyspace-configure command, you can trace build scripts that are executed
at a Cygwin 3.x command line and create a Polyspace project with the source files and compilation
options automatically specified.

C++17 Support: Run Polyspace analysis on code with C++17 features
Summary: In R2020b, Polyspace can interpret the majority of C++17-specific features.

See also:

• C++ standard version (-cpp-version)
• “C/C++ Language Standard Used in Polyspace Analysis”
• “C++17 Language Elements Supported in Polyspace”

Benefits: You can now set up a Polyspace analysis for code containing C++17-specific language
elements. Previously, some C++17 specific language elements were not recognized and caused
compilation errors.

Configuration from Build System: Generate a project file or analysis
options file by using a JSON compilation database
Summary: In R2020b, if your build system supports the generation of a JSON compilation database,
you can create a Polyspace project file or an analysis options file from your build system without

R2020b

1-2



tracing your build process. After you generate the JSON compilation database file, pass this file to
polyspace-configure by using the option -compilation-database to extract your build
information.

For more information on compilation databases, see JSON Compilation Database.

Benefits: Previously, you had to invoke your build command and trace your build process to extract
the build information. For some build systems such as Bazel, polyspace-configure could not
always trace the build process, resulting in errors when running an analysis by using the generated
options file.

Configuration from Build System: Specify how Polyspace imports
compiler macro definitions
Summary: In R2020b, when you use polyspace-configure to create a Polyspace project file or to
generate an analysis options file from your build system, you can specify how Polyspace imports the
compiler macro definitions.

Use option -import-macro-definitions and specify:

• none — Skip the import of macro definition. You can provide macro definitions manually instead.
• from-whitelist — Use a Polyspace white list to query your compiler for macro definitions.
• from-source-token — Use all non-keyword tokens in your source files to query your compiler

for macro definitions.

See also polyspace-configure.

Benefits: Previously, Polyspace used all non-keyword tokens in your source files to query your
compiler for macro definitions each time that you traced your build command. You now have greater
control on the import of macro definitions.

Configuration from Build System: Compiler configuration cached from
prior runs for improved performance
Summary: In R2020b, when you use polyspace-configure to create a Polyspace project file or to
generate an analysis options file from your build system, Polyspace caches your compiler
configuration. If your compiler configuration does not change, Polyspace reuses the cached
configuration during subsequent runs of polyspace-configure.

See also polyspace-configure.

Benefits: Previously, Polyspace did not cache your compiler configuration. Instead, during every run
of polyspace-configure, Polyspace queried your compiler for the size of fundamental types,
compiler macro definitions, and other compiler configuration information. Starting R2020b, the
caching improves the later polyspace-configure runs.

Offloading Analysis: Submit Polyspace analysis jobs from CI server to
a dedicated analysis cluster
Summary: In R2020b, you can set up a continuous integration (CI) system to offload a Polyspace
analysis to a dedicated cluster and download the results after analysis. The cluster performing the

 

1-3

https://clang.llvm.org/docs/JSONCompilationDatabase.html


analysis can be a one or several servers. In the latter case, a head node distributes the jobs to several
worker nodes which perform the analysis. MATLAB® Parallel Server™ is required on all servers
involved in distributing jobs or running the analysis.

See “Offload Polyspace Analysis from Continuous Integration Server to Another Server”.

Benefits: When running static code analysis with Polyspace as part of continuous integration, you
might want the analysis to run on a server that is different from the server running your continuous
integration (CI) scripts. For instance, you might want to perform the analysis on a server that has
more processing power. You can then offload the analysis from your CI server to the other server.

Offloading Analysis: Server-side errors reported back to client side
Summary: If you run a Polyspace analysis on a MATLAB Parallel Server cluster, in R2020b, server-
side errors are reported back in the client-side log.

The log contains this additional information reported back from the server side:

• Errors that occurred during the server-side analysis.

For instance, if a Polyspace Server license has not been activated, you see a license checkout
failure reported from the server side.

• Path to the Polyspace Server instance that runs the analysis.

Information reported from the server side appears in the log between the Start Diary and End
Diary lines.

Benefits: Starting R2020b, you can troubleshoot server-side errors more easily by using the log
reported on the client side.

Results Export: Export Polyspace results to external formats such as
SARIF JSON
Summary: In R2020b, you can use the new polyspace-results-export command to export
Polyspace results to formats such as JSON and CSV.

• The JSON object follows the Static Analysis Results Interchange Format or SARIF notation.
• The CSV file has the same fields as produced by using the earlier polyspace-report-

generator command with the -generate-results-list-file option.

Use the polyspace-report-generator command to generate PDF or Word reports in a
predefined format. To package results using your own format, export them using the polyspace-
results-export command and read the resulting JSON object or CSV file.

You can use this command with results generated locally or with results uploaded to Polyspace
Access.

See also polyspace-results-export.

Benefits: Using the JSON object or CSV file, you can display results in a convenient format. For
instance, you can group defects found by Bug Finder based on their impact. Because the JSON object

R2020b

1-4



follows a standard notation, you can also use this format to display Polyspace results with results
from other tools.

User Authentication: Use a credentials file to pass your Polyspace
Access credentials at the command line
Summary: In R2020b, if you use a command that requires your Polyspace Access credentials, you
can save these credentials in a file that you pass to the command. If you use that command inside a
script, you no longer need to store your credentials in the script.

To create a credentials file, enter a set of credentials, either as -login and -encrypted-password
entries on separate lines, for example:

-login jsmith
-encrypted-password LAMMMEACDMKEFELKMNDCONEAPECEEKPL

Or as a -api-key entry:

-api-key keyValue123

For more information on generating API keys, see “Configure User Manager” (Polyspace Code Prover
Access).

Save the file and pass it to the command by using the -credentials-file flag. You can use the
credentials file with these Polyspace commands:

• polyspace-access
• polyspace-results-export
• polyspace-report-generator

For increased security, restrict the read/write permissions for the credentials file.

Benefits: Previously, you could provide your Polyspace Access credentials in a script only by passing
them directly to the command. Starting R2020b, when the command that requires the credentials
runs, someone who is inspecting currently running processes, for instance, by using the command ps
aux on Linux, can no longer see your credentials.

Importing Review Information: Accept information in source or
destination results folder in case of merge conflicts
Summary: In R2020b, when importing review information such as severity, status, and comments at
the command line, if the same result has different review information in the source and destination
folder, you can choose one of the following:

• That the review information in the destination folder is retained.

This behavior is the default behavior of the polyspace-comments-import command.
• That the review information in the source folder overwrites the information in the destination

folder.

You can switch to this behavior using the new option -overwrite-destination-comments.

See also polyspace-comments-import.

 

1-5



Benefits: Previously, newer review information in the destination folder was retained and could not
be overwritten. Now, when merging review information, you can choose whether the source or
destination folder takes precedence in case of merge conflicts.

AUTOSAR Support: Analysis more resilient to ARXML errors
Summary: In R2020b, specific types of ARXML errors do not stop a Code Prover analysis. Despite
the errors, the analysis attempts to model the software component behaviors as far as possible and
continue into the code extraction and code verification phases.

See also “Interpret Errors and Warnings in Polyspace Analysis of AUTOSAR Code”..

Benefits: You can run a Code Prover analysis more easily on in-progress and incomplete ARXMLs.
The ARXML parsing phase reports the errors for each software component behavior. If any of these
errors lead to downstream errors during the code extraction phase, you can return to the reports for
each software component behavior and track down and fix the ARXML errors.

AUTOSAR Support: Specify file and folder patterns to exclude from
analysis
Summary: In R2020b, you can avoid errors in Polyspace analysis from AUTOSAR projects by
excluding specific subfolders and files in the source folder up front. For each source folder that you
specify, using a Linux-find-like syntax, you can specify patterns for file paths that must be excluded.

You can also use a similar file exclusion strategy to exclude files from the ARXML folder.

For more information, see:

• “Select AUTOSAR XML (ARXML) and Code Files for Polyspace Analysis”
• polyspace-autosar Command

Benefits: Previously, you could only specify a root folder for your ARXML and source files. The finer
file-selection allows you to avoid folders that might cause errors in project setup.

AUTOSAR Support: Specify AUTOSAR software component behaviors
and data types using more refined syntax
Summary: In R2020b, you can use a more refined syntax when specifying AUTOSAR software
component behaviors to analyze or when importing data types. Using a Linux-find-like syntax, you
can specify inclusion or exclusion patterns for the fully qualified names of behaviors or types.

For more information, see polyspace-autosar Command.

polyspacePackNGo Function: Generate and package Polyspace option
files from a Simulink model
Summary: In R2020b, you can package Polyspace option files along with code generated from a
Simulink® model, and then analyze the code on a different machine in a distributed workflow. After
packaging the generated code, create and archive options files required for a Polyspace analysis by
using the polyspacePackNGo function.

R2020b

1-6



See also:

• polyspacePackNGo
• “Run Polyspace Analysis on Generated Code by Using Packaged Options Files”

Benefits: In a distributed workflow, a Simulink user generates code from a model and sends the code
to another development environment. In this environment, a Polyspace user analyzes the generated
code by using design ranges and other model-specific information. Previously, in this distributed
workflow, you configured the Polyspace analysis options manually. Starting in R2020b, you do not
have to manually create the option files when analyzing generated code by using Polyspace in a
distributed workflow.

Changes in analysis options and binaries
Option -consider-external-arrays-as-unsafe also applies to C code

In R2020b, the option -consider-external-arrays-as-unsafe also applies to C code. The
option removes the default Code Prover assumption that external arrays of unspecified size can be
safely accessed at any index. Previously, the option was available only for C++ code.

See also -consider-external-array-access-unsafe.

Changes in run-time checks

Summary: In R2020b, you see these changes in the results of Code Prover run-time checks.

Check Change
Non-initialized variable and Non-
initialized local variable

If all fields of a structure are unused and
uninitialized, checks for initialization on this
structure are orange.

Previously, if none of the fields of a structure
were used later, the checks considered the
structure as initialized. For instance, in this code:

typedef struct { int a; char c; } S;

void foo(void) {
  S s;
  S s1;

  s = s1; 
}

the Non-initialized local variable check on s1
in s = s1 is orange. Prior to R2020b, the check
was green because even though the structure
fields are uninitialized, they are not used later.

Compatibility Considerations
You can see a change in the number of results flagged by the updated run-time checks.

 

1-7



Updated code metrics specifications
Summary: In R2020b, these code metrics specifications have been updated.

Code Metric Update
Number of Called Functions These metrics now accounts for function calls in a

C++ constructor initializer list.

For instance, in this code snippet, the number of
called functions of Derived::Derived() is one.
Previously, the number was computed as zero.

class  Base
{
  int b;
  public:
      Base() {
          b = 0;
      };
};
class Derived : public Base
{
  int d;
  public:
      Derived() : Base() {
          d = 0;
      };  
};

Compatibility Considerations
If you compute these code metrics, you can see a difference in results compared to previous releases.

R2020b

1-8



R2020a

Version: 10.2

New Features

Bug Fixes

Compatibility Considerations

2



Checking Initialization Code: Analyze initialization code alone before
checking remaining program
Summary: In R2020a, you can mark off a section of code as initialization code and check for run-time
errors only in this section.

For instance, in this example, the initialization code starts from the beginning of main and continues
up to the pragma polyspace_end_of_init. The verification stops when the pragma is
encountered.

#include <limits.h>

int aVar;
const int aConst = INT_MAX;
int anotherVar;

int main() {
      aVar = aConst + 1;
#pragma polyspace_end_of_init
      anotherVar = aVar - 1;
      return 0;
}

For more information, see Verify initialization section of code only (-init-only-
mode).

Benefits: Often, issues in the initialization code can invalidate the analysis of the remaining code. For
instance, in the preceding example, the overflow in the line aVar = aConst+1 must be fixed first
before the value of aVar is used in subsequent code. Now, you can check the initialization code alone
and fix the issues found before verifying the remaining program.

Compiler Support: Set up Polyspace analysis easily for code compiled
with MPLAB XC8 C compilers
Summary: If you build your source code by using MPLAB XC8 C compilers, in R2020a, you can
specify the compiler name for your Polyspace analysis.

You specify a compiler using the option Compiler (-compiler).
polyspace-code_prover-server -compiler microchip -target pic -sources file.c ....

See also MPLAB XC8 C Compiler (-compiler microchip).

Benefits: You can now set up a Polyspace project without knowing the internal workings of MPLAB
XC8 C compilers. If your code compiles with your compiler, it will compile with Polyspace in most
cases without requiring additional setup. Previously, you had to explicitly define macros that were
implicitly defined by the compiler and remove unknown language extensions from your preprocessed
code.

R2020a

2-2

https://www.mathworks.com/help/releases/R2020a/polyspace_code_prover_server/ref/verifyinitializationsectionofcodeonlyinitonlymode.html
https://www.mathworks.com/help/releases/R2020a/polyspace_code_prover_server/ref/verifyinitializationsectionofcodeonlyinitonlymode.html
https://www.mathworks.com/help/releases/R2020a/polyspace_code_prover_server/ref/compilercompiler.html
https://www.mathworks.com/help/releases/R2020a/polyspace_code_prover_server/ref/mplabxc8ccompilercompilermicrochip.html


Compiler Support: Set up Polyspace analysis to emulate MPLAB XC16
and XC32 compilers
Summary: If you use MPLAB XC16 or XC32 compilers to build your source code, in R2020a, you can
easily emulate these compilers by using the Polyspace GCC compiler options. See Emulate Microchip
MPLAB XC16 and XC32 Compilers.

For each compiler, you can emulate these target processor types:

• MPLAB XC16: Targets PIC24 and dsPIC.
• MPLAB XC32: Target PIC32.

Benefits: You can copy the analysis options required for emulating MPLAB XC16 or XC32 compilers
and paste into your Polyspace options file (or specify in a Polyspace project in the user interface), and
avoid compilation errors from issues specific to these compilers.

Source Code Encoding: Non-ASCII characters in source code analyzed
and displayed without errors
Summary: In R2020a, if your source code contains non-ASCII characters, for instance, Japanese or
Korean characters, the Polyspace analysis can interpret the characters and later display the source
code correctly.

If you still have compilation errors or display issues from non-ASCII characters, you can explicitly
specify your source code encoding using the option Source code encoding (-sources-
encoding).

Checks on Initialization Code: Verify that global variables are
initialized after warm reboot
Summary: In R2020a, you can mark off a section of a C program as initialization code and verify if all
non-const global variables are explicitly initialized at declaration or in that section.

For instance, in this simple example, the initialization code starts from the beginning of main and
continues up to the pragma polyspace_end_of_init. The global variable aVar is initialized in this
section but the variable anotherVar is not.

int aVar;
const int aConst = -1;
int anotherVar;

int main() {
      aVar = aConst;
#pragma polyspace_end_of_init
      return 0;
}

For more information, see:

• Check that global variables are initialized after warm reboot (-check-
globals-init)

• Global variable not assigned a value in initialization code

 

2-3

https://www.mathworks.com/help/releases/R2020a/polyspace_code_prover_server/ug/emulate-microchip-mplab-xc16-and-xc32-compilers.html
https://www.mathworks.com/help/releases/R2020a/polyspace_code_prover_server/ug/emulate-microchip-mplab-xc16-and-xc32-compilers.html
https://www.mathworks.com/help/releases/R2020a/polyspace_code_prover_server/ref/sourcecodeencodingsoucesencoding.html
https://www.mathworks.com/help/releases/R2020a/polyspace_code_prover_server/ref/sourcecodeencodingsoucesencoding.html
https://www.mathworks.com/help/releases/R2020a/polyspace_code_prover_server/ref/checkthatglobalvariablesareinitializedafterwarmrebootcheckglobalsinit.html
https://www.mathworks.com/help/releases/R2020a/polyspace_code_prover_server/ref/checkthatglobalvariablesareinitializedafterwarmrebootcheckglobalsinit.html
https://www.mathworks.com/help/releases/R2020a/polyspace_code_prover_access/ref/globalvariablenotassignedavalueininitializationcode.html


Benefits: In a warm reboot, to save time, the bss segment of a program, which might hold variable
values from a previous state, is not loaded. Instead, the program is supposed to explicitly initialize all
non-const variables without default values before execution. You can now delimit this initialization
code and verify that all non-const global variables are indeed initialized in a warm reboot.

Exporting Results: Export only results that must be reviewed to
satisfy software quality objectives (SQOs)
Summary: In R2020a, when exporting Polyspace results from the Polyspace Access web interface to
a text file, you can export only those results that must be fixed or justified to satisfy your software
quality objectives. The software quality objectives are specified through a progressively stricter set of
SQO levels, numbered from 1 to 6.

See also:

• polyspace-access
• Send Email Notifications with Polyspace Code Prover Results
• Software Quality Objectives (Polyspace Code Prover Access)

Benefits: You can customize the requirements of each level in the Polyspace Access web interface,
and then use the option -open-findings-for-sqo with the level number to export only those
results that must be reviewed to meet the requirements.

Jenkins Support: Use sample Jenkins Pipeline script to run Polyspace
as part of continuous delivery pipeline
Summary: In R2020a, you can start from a template Jenkins Pipeline script to run Polyspace analysis
as part of a continuous delivery pipeline.

See Sample Jenkins Pipeline Scripts for Polyspace Analysis.

Benefits: You can make simple replacements to adapt the template to your Polyspace Server and
Access installations, and include the script in a new or existing Jenkinsfile to get up and running with
Polyspace in Jenkins Pipelines.

Changes in analysis options and binaries
Option -function-behavior-specifications renamed to -code-behavior-specifications and
capabilities extended
Warns

The option -function-behavior-specifications has been renamed to -code-behavior-
specifications.

Using this option, you could previously map your functions to standard library functions to work
around analysis imprecisions or specify thread creation routines. Now, you can use the option to
define a blacklist of functions to forbid from your source code.

See also -code-behavior-specifications.

R2020a

2-4

https://www.mathworks.com/help/releases/R2020a/polyspace_code_prover_server/ref/polyspaceaccess.html
https://www.mathworks.com/help/releases/R2020a/polyspace_code_prover_server/gs/sample-e-mail-templates-for-e-mails-with-polyspace-results.html
https://www.mathworks.com/help/releases/R2020a/polyspace_code_prover_access/ug/software-quality-objectives-or-sqo.html
https://www.mathworks.com/help/releases/R2020a/polyspace_code_prover_server/ug/sample-jenkins-pipeline-scripts-for-polyspace-analysis.html
https://www.mathworks.com/help/releases/R2020a/polyspace_code_prover_server/ref/codebehaviorspecifications.html


Changes in run-time checks
Summary: In R2020a, you see these changes in the results of Code Prover run-time checks.

Check Change
Uncaught exception The check no longer flags the case where a function throws an exception

whose data type is not in the list of exception types that the function is
declared to throw.

For instance, the function foo is declared to throw exceptions of type
int and std::exception:

void foo2() throw(std::exception, int); 

Code Prover used to check if the function can throw exceptions outside
the specified types. The check is not performed from R2020a onwards.

Dynamic exception specification is deprecated in C++11 and removed in
the later standard C++17. See also Dynamic exception specification in
the C++ standard.

Compatibility Considerations
You can see a change in the number of results flagged by the updated run-time checks.

Report Generation: Configure report generator to communicate with
Polyspace Access over HTTPS
In R2020a, if you generate reports for results that are stored on Polyspace Access, you can configure
the polyspace-report-generator binary to communicate with Polyspace Access over HTTPS.

Use the -configure-keystore option to run this one-time configuration step. See polyspace-
report-generator.

Previously, you needed a Polyspace Bug Finder™ desktop license to generate reports if Polyspace
Access was configured with HTTPS.

Report Generation: Navigate to Polyspace Access Results List from
report
In R2020a, if you generate a report for results that are stored on Polyspace Access, you can navigate
from the report to the Results List in the Polyspace Access web interface.

 

2-5

https://www.mathworks.com/help/releases/R2020a/codeprover/ref/uncaughtexception.html
https://en.cppreference.com/w/cpp/language/except_spec
https://en.cppreference.com/w/cpp/language/except_spec
https://www.mathworks.com/help/releases/R2020a/polyspace_code_prover_server/ref/polyspacereportgenerator.html
https://www.mathworks.com/help/releases/R2020a/polyspace_code_prover_server/ref/polyspacereportgenerator.html


Click the link in the ID column to open Polyspace Access with the Results List filtered down to the
corresponding finding.

R2020a

2-6



R2019b

Version: 10.1

New Features

Bug Fixes

Compatibility Considerations

3



Shared Variables Mode: Run a less extensive Code Prover analysis on
complete application to compute global variable sharing and usage
only
Summary: In R2019b, you can run a less extensive Code Prover analysis on your complete
application to see a list of all global variables and their sharing and usage.

You specify this Code Prover mode using the option -shared-variables-mode:
polyspace-code-prover-server -shared-variables-mode -sources-list-file sourceList.txt ....

In this mode, the analysis stops before the run-time error detection phase and the results contain:

• Global variables (shared, unshared, used, unused)
• Coding rules, if coding rule checking is enabled
• Code metrics, if code metrics computation is enabled

See also Show global variable sharing and usage only (-shared-variables-mode).

Benefits: You can now run Code Prover on your entire application to see global variable sharing and
usage, and then run Code Prover component-by-component for run-time error detection. Previously,
global variables were reported only in the full analysis that included run-time error detection. Run-
time error detection can sometimes take significantly longer for complete applications. If you want to
review only the global variable sharing and usage in your complete application, you no longer require
the full analysis.

Compiler Support: Set up Polyspace analysis easily for code compiled
with Cosmic compilers
Summary: If you build your source code using Cosmic compilers, in R2019b, you can specify the
compiler name for your Polyspace analysis.

You specify a compiler using the option Compiler (-compiler).
polyspace-code-prover-server -compiler cosmic -target s12z -sources-list-file sourceList.txt ....

Benefits:You can now set up a Polyspace project without knowing the internal workings of Cosmic
compilers. If your code compiles with your compiler, it will compile with Polyspace in most cases
without requiring additional setup. Previously, you had to explicitly define macros that were implicitly
defined by the compiler and remove unknown language extensions from your preprocessed code.

Configuration from Build System: Compiler version automatically
detected from build system
Summary: In R2019b, if you create a Polyspace analysis configuration from your build system using
the polyspace-configure command, the analysis uses the correct compiler version for the option
Compiler (-compiler) for GNU® C, Clang, and Microsoft® Visual C++® compilers. You do not
have to change the compiler version before starting the Polyspace analysis.

Benefits: Previously, if you traced your build system to create a Polyspace analysis configuration, the
latest supported compiler version was used in the configuration. If your code was compiled with an
earlier version, you might encounter compilation errors and might have to explicitly specify an earlier
compiler version before starting the analysis.

R2019b

3-2

https://www.mathworks.com/help/releases/R2019b/polyspace_code_prover_server/ref/showglobalvariablesharingandusageonlysharedvariablesmode.html
https://www.mathworks.com/help/releases/R2019b/polyspace_code_prover_server/ref/compilercompiler.html
https://www.mathworks.com/help/releases/R2019b/polyspace_code_prover_server/ref/compilercompiler.html


For instance, if the Polyspace analysis configuration uses the version GCC 4.9 and some of the
standard headers in your GCC version include the file x86intrin.h, you can see a compilation error
such as this error:
/usr/lib/gcc/x86_64-linux-gnu/6/include/avx512bwintrin.h, line 2427: 
                                     error: invalid type conversion
|    return (__m512i) __builtin_ia32_packssdw512_mask ((__v16si) __A,
|           

You had to connect the error to the incorrect compiler version, and then explicitly set a different
version. Now, the compiler version is automatically detected when you create a project from your
build command.

Function Stub Improvements: See fewer orange checks from default
conservative assumptions on pointer arguments
Summary: In R2019b, a Code Prover analysis assumes that stubbed function arguments passed by
reference or pointer cannot remain uninitialized on return from the function. A function is stubbed if
its definition is not available for the analysis.

Benefits: You see fewer orange checks from the previous default assumption that stubbed function
arguments that are not initialized might remain uninitialized on return from the function.

For instance, in the following example, Code Prover assumes that i is initialized on return from the
function stub. With this assumption, the non-initialized variable check on i in the line j=i appears
green.

int main(void) 
{ 
    int i, j; 
    stub(&i); 
    j = i; 
    return 0; 
} 

Compatibility Considerations
You see fewer orange non-initialized variable checks compared to previous releases. To revert to the
previous conservative assumptions for specific function stubs, specify external constraints. See
External Constraints for Polyspace Analysis.

MISRA C:2012 Directive 4.12: Dynamic memory allocation shall not be
used
Summary: In R2019b, you can look for violations of MISRA C®:2012 Directive 4.12. The directive
states that dynamic memory allocation and deallocation packages provided by the Standard Library
or third-party packages shall not be used. The use of these packages can lead to undefined behavior.

See MISRA C:2012 Dir 4.12.

 

3-3

https://www.mathworks.com/help/releases/R2019b/polyspace_code_prover_server/ug/drs-configuration-settings.html
https://www.mathworks.com/help/releases/R2019b/polyspace_code_prover_access/ref/misrac2012dir4.12.html




R2019a

Version: 10.0

New Features

4



Code Prover Analysis Engine Separated from Viewer: Run Code Prover
analysis on server and view the results from multiple client machines
Summary: In R2019a, you can run Code Prover on a server with the new product, Polyspace Code
Prover™ Server™. You can then host the analysis results on the same server or a second server with
the product, Polyspace Code Prover Access™. Developers whose code was analyzed and other
reviewers such as quality engineers and development managers can fetch these results from the
server to their desktops and view the results in a web browser, provided they have a Polyspace Code
Prover Access license.

Benefits: You can run the Code Prover analysis on a few powerful server class machines but view the
analysis results from many terminals.

With the desktop product, Polyspace Code Prover, you have to run the analysis and view the results
on the same machine. To view the results on a different machine, you need a second instance of a
desktop product. The desktop products can now be used by individual developers on their desktops
prior to code submission and the server products used after code submission. See Polyspace Products
for Code Analysis and Verification (Polyspace Bug Finder Server).

Continuous Integration Support: Run Code Prover on server class
computers with continuous upload to Polyspace Access web interface
Summary: In R2019a, you can check exhaustively for run-time errors on server class machines as
part of continuous integration. When developers submit code to a shared repository, a build
automation tool such as Jenkins can perform the checks using the new Polyspace Code Prover Server

R2019a

4-2

https://www.mathworks.com/help/releases/R2019a/polyspace_bug_finder_server/gs/polyspace-products-for-code-analysis-and-verification.html
https://www.mathworks.com/help/releases/R2019a/polyspace_bug_finder_server/gs/polyspace-products-for-code-analysis-and-verification.html


product. The analysis results can be uploaded to the Polyspace Access web interface for review. Each
reviewer with a Polyspace Code Prover Access license can login to the Polyspace Access web
interface and review the results.

See:

• Install Polyspace Server and Access Products
• Run Polyspace Code Prover on Server and Upload Results to Web Interface

Benefits:

• Automated post-submission checks: In a continuous integration process, build scripts run
automatically on new code submissions before integration with a code base. With the new product
Polyspace Code Prover Server, a Code Prover analysis can be included in this build process. The
analysis can run Code Prover checks on the new code submissions and report the results. The
results can be reviewed in the Polyspace Access web interface with a Polyspace Code Prover
Access license.

• Collaborative review: The analysis results can be uploaded to the Polyspace Access web interface
for collaborative review. For instance:

• Each quality assurance engineer with a Polyspace Code Prover Access license can review the
Code Prover results for a project and assign issues to developers for fixing.

• Each development team manager with a Polyspace Code Prover Access license can see an
overview of Code Prover results for all projects managed by the team (and also drill down to
details if necessary).

 

4-3

https://www.mathworks.com/help/releases/R2019a/polyspace_code_prover_server/gs/install-products-required-for-polyspace-analysis-on-server.html
https://www.mathworks.com/help/releases/R2019a/polyspace_code_prover_server/gs/run-code-prover-on-server.html


For further details, see the release notes of Polyspace Code Prover Access .

Continuous Integration Support: Set up testing criteria based on Code
Prover static analysis results
Summary: In R2019a, you can run Code Prover on server class machines as part of unit and
integration testing. You can define and set up testing criteria based on Code Prover static analysis
results.

For instance, you can set up the criteria that new code submissions must have zero red checks
(definite run-time errors) before integration with a code base. Any submission with red checks can
cause a test failure and require code fixes.

See:

• polyspace-code-prover-server for how to run Code Prover on servers.
• polyspace-access for how to export Code Prover results for comparison against predefined

testing criteria.

If you use Jenkins for build automation, you can use the Polyspace plugin. The plugin provides helper
functions to filter results based on predefined criteria. See Sample Scripts for Polyspace Analysis with
Jenkins.

Benefits:

• Automated testing: After you define testing criteria based on Code Prover results, you can run the
tests along with regular dynamic tests. The tests can run on a periodic schedule or based on
predefined triggers.

• Prequalification with Polyspace desktop products: Prior to code submission, to avoid test failures,
developers can check their submission with the same criteria as the server-side analysis. Using an
installation of the desktop product, Polyspace Code Prover, developers can emulate the server-
side analysis on their desktops and review the results in the user interface of the desktop product.
For more information on the complete suite of Polyspace products available for deployment in a
software development workflow, see Polyspace Products for Code Analysis and Verification
(Polyspace Bug Finder Server).

To save processing power on the desktop, the analysis can also be offloaded to a server and only
the results reviewed on the desktop. See Install Products for Submitting Polyspace Analysis from
Desktops to Remote Server (Polyspace Bug Finder Server).

Continuous Integration Support: Set up email notification with
summary of Code Prover results after analysis
Summary: In R2019a, you can set up email notification for new Code Prover results. The email can
contain:

• A summary of new results from the latest Code Prover run only for specific files or modules.
• An attachment with a full list of the new results. Each result has an associated link to the

Polyspace Access web interface for more detailed information.

R2019a

4-4

https://www.mathworks.com/help/releases/R2019a/polyspace_code_prover_access/release-notes.html
https://www.mathworks.com/help/releases/R2019a/polyspace_code_prover_server/ref/polyspacecodeproverservercommand.html
https://www.mathworks.com/help/releases/R2019a/polyspace_code_prover_server/ref/polyspaceaccess.html
https://www.mathworks.com/help/releases/R2019a/polyspace_code_prover_server/ug/sample-scripts-for-polyspace-analysis-with-jenkins.html
https://www.mathworks.com/help/releases/R2019a/polyspace_code_prover_server/ug/sample-scripts-for-polyspace-analysis-with-jenkins.html
https://www.mathworks.com/help/releases/R2019a/polyspace_bug_finder_server/gs/polyspace-products-for-code-analysis-and-verification.html
https://www.mathworks.com/help/releases/R2019a/polyspace_bug_finder_server/gs/set-up-dispatch-of-polyspace-analysis-to-remote-servers-with-matlab-parallel-server.html
https://www.mathworks.com/help/releases/R2019a/polyspace_bug_finder_server/gs/set-up-dispatch-of-polyspace-analysis-to-remote-servers-with-matlab-parallel-server.html


See Send E-mail Notifications with Polyspace Code Prover Results.

Benefits:

• Automated notification: Developers can get notified in their e-mail inbox about results from the
last Code Prover run on their submissions.

• Preview of Code Prover results: Developers can see a preview of the new Code Prover results.
Based on their criteria for reviewing results, this preview can help them decide whether they want
to see further details of the results.

• Easy navigation from e-mail summary to Polyspace Access web interface: Each developer with a
Polyspace Code Prover Access license can use the links in the e-mail attachments to see further
details of a result in the Polyspace Access web interface.

Offloading Polyspace Analysis to Servers: Use Polyspace desktop
products on client side and server products on server side
Summary: In R2019a, you can offload a Polyspace analysis from your desktop to remote servers by
installing the Polyspace desktop products on the client side and the Polyspace server products on the
server side. After analysis, the results are downloaded to the client side for review. You must also
install MATLAB Parallel Server on the server side to manage submissions from multiple client
desktops.

 

4-5

https://www.mathworks.com/help/releases/R2019a/polyspace_code_prover_server/gs/sample-e-mail-templates-for-e-mails-with-polyspace-results.html


See Install Products for Submitting Polyspace Analysis from Desktops to Remote Server.

Benefits: The Polyspace desktop products have a graphical user interface. You can configure options
in the user interface with assistance from features such as auto-population of option arguments and
contextual help. To save processing time on your desktop, you can then offload the analysis to remote
servers.

R2019a

4-6

https://www.mathworks.com/help/releases/R2019a/polyspace_code_prover_server/gs/set-up-dispatch-of-polyspace-analysis-to-remote-servers-with-matlab-parallel-server.html

	R2020b
	Compiler Support: Set up Polyspace analysis for code compiled by Renesas SH C compilers
	Cygwin Support: Create Polyspace projects automatically by using Cygwin 3.x build commands
	C++17 Support: Run Polyspace analysis on code with C++17 features
	Configuration from Build System: Generate a project file or analysis options file by using a JSON compilation database
	Configuration from Build System: Specify how Polyspace imports compiler macro definitions
	Configuration from Build System: Compiler configuration cached from prior runs for improved performance
	Offloading Analysis: Submit Polyspace analysis jobs from CI server to a dedicated analysis cluster
	Offloading Analysis: Server-side errors reported back to client side
	Results Export: Export Polyspace results to external formats such as SARIF JSON
	User Authentication: Use a credentials file to pass your Polyspace Access credentials at the command line
	Importing Review Information: Accept information in source or destination results folder in case of merge conflicts
	AUTOSAR Support: Analysis more resilient to ARXML errors
	AUTOSAR Support: Specify file and folder patterns to exclude from analysis
	AUTOSAR Support: Specify AUTOSAR software component behaviors and data types using more refined syntax
	polyspacePackNGo Function: Generate and package Polyspace option files from a Simulink model
	Changes in analysis options and binaries
	Option -consider-external-arrays-as-unsafe also applies to C code
	Changes in run-time checks

	Updated code metrics specifications

	R2020a
	Checking Initialization Code: Analyze initialization code alone before checking remaining program
	Compiler Support: Set up Polyspace analysis easily for code compiled with MPLAB XC8 C compilers
	Compiler Support: Set up Polyspace analysis to emulate MPLAB XC16 and XC32 compilers
	Source Code Encoding: Non-ASCII characters in source code analyzed and displayed without errors
	Checks on Initialization Code: Verify that global variables are initialized after warm reboot
	Exporting Results: Export only results that must be reviewed to satisfy software quality objectives (SQOs)
	Jenkins Support: Use sample Jenkins Pipeline script to run Polyspace as part of continuous delivery pipeline
	Changes in analysis options and binaries
	Option -function-behavior-specifications renamed to -code-behavior-specifications and capabilities extended

	Changes in run-time checks
	Report Generation: Configure report generator to communicate with Polyspace Access over HTTPS
	Report Generation: Navigate to Polyspace Access Results List from report

	R2019b
	Shared Variables Mode: Run a less extensive Code Prover analysis on complete application to compute global variable sharing and usage only
	Compiler Support: Set up Polyspace analysis easily for code compiled with Cosmic compilers
	Configuration from Build System: Compiler version automatically detected from build system
	Function Stub Improvements: See fewer orange checks from default conservative assumptions on pointer arguments
	MISRA C:2012 Directive 4.12: Dynamic memory allocation shall not be used

	R2019a
	Code Prover Analysis Engine Separated from Viewer: Run Code Prover analysis on server and view the results from multiple client machines
	Continuous Integration Support: Run Code Prover on server class computers with continuous upload to Polyspace Access web interface
	Continuous Integration Support: Set up testing criteria based on Code Prover static analysis results
	Continuous Integration Support: Set up email notification with summary of Code Prover results after analysis
	Offloading Polyspace Analysis to Servers: Use Polyspace desktop products on client side and server products on server side


